Images by Date
Images by Category
Solar System
White Dwarfs
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Galaxy Clusters
Cosmology/Deep Field
Images by Interest
Space Scoop for Kids
Sky Map
Photo Blog
Top Rated Images
Image Handouts
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
W51: Chandra Peers into a Nurturing Cloud

  • Giant molecular clouds, containing mostly hydrogen and helium, are where most new stars and planets form.

  • W51 is one of the closest such objects to Earth so it is an excellent target for learning more about the star-formation process.

  • A new composite image of W51 with X-ray data from Chandra (blue) and Spitzer (orange and yellow-green) is being released.

  • The X-ray data show the young stars are often clumped together in clusters, while bathing their surroundings in high-energy light.

In the context of space, the term 'cloud' can mean something rather different from the fluffy white collections of water in the sky or a way to store data or process information. Giant molecular clouds are vast cosmic objects, composed primarily of hydrogen molecules and helium atoms, where new stars and planets are born. These clouds can contain more mass than a million suns, and stretch across hundreds of light years.

The giant molecular cloud known as W51 is one of the closest to Earth at a distance of about 17,000 light years. Because of its relative proximity, W51 provides astronomers with an excellent opportunity to study how stars are forming in our Milky Way galaxy.

A new composite image of W51 shows the high-energy output from this stellar nursery, where X-rays from Chandra are colored blue. In about 20 hours of Chandra exposure time, over 600 young stars were detected as point-like X-ray sources, and diffuse X-ray emission from interstellar gas with a temperature of a million degrees or more was also observed. Infrared light observed with NASA's Spitzer Space Telescope appears orange and yellow-green and shows cool gas and stars surrounded by disks of cool material.

W51 contains multiple clusters of young stars. The Chandra data show that the X-ray sources in the field are found in small clumps, with a clear concentration of more than 100 sources in the central cluster, called G49.5−0.4 (pan over the image to find this source.)

Although the W51 giant molecular cloud fills the entire field-of-view of this image, there are large areas where Chandra does not detect any diffuse, low energy X-rays from hot interstellar gas. Presumably dense regions of cooler material have displaced this hot gas or blocked X-rays from it.

Labeled X-ray image showing massive star location
X-ray Image of W51 (cropped)

One of the massive stars in W51 is a bright X-ray source that is surrounded by a concentration of much fainter X-ray sources, as shown in a close-up view of the Chandra image. This suggests that massive stars can form nearly in isolation, with just a few lower mass stars rather than the full set of hundreds that are expected in typical star clusters.

Another young, massive cluster located near the center of W51 hosts a star system that produces an extraordinarily large fraction of the highest energy X-rays detected by Chandra from W51. Theories for X-ray emission from massive single stars can't explain this mystery, so it likely requires the close interaction of two very young, massive stars. Such intense, energetic radiation must change the chemistry of the molecules surrounding the star system, presenting a hostile environment for planet formation.

A paper describing these results, led by Leisa Townsley (Penn State), appeared in the July 14th 2014 issue of The Astrophysical Journal Supplement Series and is available online.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.


Fast Facts for W51:
Credit  X-ray: NASA/CXC/PSU/L.Townsley et al; Infrared: NASA/JPL-Caltech
Release Date  July 12, 2017
Scale  Image is about 20 arcmin (100 light years) across
Category  Normal Stars & Star Clusters
Coordinates (J2000)  RA 19h 23m 50s | Dec 14° 06´ 00"
Constellation  Aquila
Observation Date  2 pointings in June 2003
Observation Time  20 hours 10 min
Obs. ID  2524, 3711
Instrument  ACIS
References Townsley, L. et al., 2014, ApJS, 213, 1; arXiv:1403.2576
Color Code  X-ray (Blue), Infrared (Yellow-Orange)
Distance Estimate  About 17,000 light years
distance arrow
Visitor Comments (5)

This is one of the most interesting images I have ever seen. I've been learning a lot from this website and looking forward to find new things.
From a young student in Brazil.

Posted by Isabela Buzzo on Monday, 09.25.17 @ 13:13pm

Great contribution to the astrophysics world. Amazing read, please keep up the great work.

Posted by Rushax on Wednesday, 08.2.17 @ 02:09am

Magic stuff. And fascinating also.

Posted by Errol on Monday, 07.17.17 @ 23:06pm

Liked the tutorial content and the educated guesses on possible explanations. Thanks.

Posted by C. Purcell on Monday, 07.17.17 @ 15:19pm

I've relished the images offered by Chandra for some years now. This is one of the best. What an exciting Universe we live in, and with.

Posted by Michael Gibbons on Monday, 07.17.17 @ 11:07am

Rate This Image

Rating: 3.8/5
(607 votes cast)
Download & Share

More Information
More Images
X-ray Image of W51
Jpg, Tif

More Images
Animation & Video
Tour of W51

More Animations
Related Images
30 Doradus
30 Doradus
(12 April 12)
Trumpler 14
Trumpler 14
(31 Aug 05)

Related Information
Related Podcast
Top Rated Images
Chandra Releases 3D Instagram Experiences

Timelapses: Crab Nebula and Cassiopeia A

Brightest Cluster Galaxies