Images by Date
Images by Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
More Images: NASA's Chandra Opens Treasure Trove of Cosmic Delights
1
Click for large jpg Collage
Unlabeled
Jpeg, Tif
Click for large jpg Collage
Labeled
Jpeg, Tif
Image Gallery
This selection of images of different kinds of light from various missions and telescopes have been combined to better understand the universe. Each composite image contains X-ray data from Chandra as well as other telescopes. The objects represent a range of different astrophysical objects and include the galaxy Messier 82, the galaxy cluster Abell 2744, the supernova remnant 1987A, the binary star system Eta Carinae, the Cartwheel galaxy, and the planetary nebula Helix Nebula.
(Credit: NASA/CXC/SAO, NASA/STScI, NASA/JPL-Caltech/SSC, ESO/NAOJ/NRAO, NRAO/AUI/NSF, NASA/CXC/SAO/PSU, and NASA/ESA)

2
Click for large jpg Composite
Jpeg, Tif
Click for large jpg X-ray
Jpeg, Tif
Click for large jpg Optical
Jpeg, Tif
X-ray & Optical Images of M82
Messier 82, or M82, is a galaxy that is oriented edge-on to Earth. This gives astronomers and their telescopes an interesting view of what happens as this galaxy undergoes bursts of star formation. X-rays from Chandra (appearing as blue and pink) show gas in outflows about 20,000 light years long that has been heated to temperatures above ten million degrees by repeated supernova explosions. Optical light data from NASA's Hubble Space Telescope (red and orange) shows the galaxy.
(Credit: X-ray: NASA/CXC; Optical: NASA/STScI)

3
Click for large jpg Composite
Jpeg, Tif
Click for large jpg X-ray
Jpeg, Tif
Click for large jpg Optical
Jpeg, Tif
X-ray & Optical Images of Abell 2744
Galaxy clusters are the largest objects in the universe held together by gravity. They contain enormous amounts of superheated gas, with temperatures of tens of millions of degrees, which glows brightly in X-rays, and can be observed across millions of light years between the galaxies. This image of the Abell 2744 galaxy cluster combines X-rays from Chandra (diffuse blue emission) with optical light data from Hubble (red, green, and blue).
(Credit: X-ray: NASA/CXC; Optical: NASA/STScI)

4
Click for large jpg 2000
Jpeg, Tif
Click for large jpg 2005
Jpeg, Tif
Click for large jpg 2009
Jpeg, Tif
Click for large jpg 2013
Jpeg, Tif
Click for large jpg Timelapse
2000 - 2013
MP4, GIF

Click for large jpg Multiwavelength Radio, Optical, X-ray
Jpeg, Tif
Click for large jpg Radio
Jpeg, Tif
Click for large jpg Optical
Jpeg, Tif
Click for large jpg X-ray
Jpeg, Tif
X-ray, Optical & Radio Images of Supernova 1987A
On February 24, 1987, observers in the southern hemisphere saw a new object in a nearby galaxy called the Large Magellanic Cloud. This was one of the brightest supernova explosions in centuries and soon became known as Supernova 1987A (SN 87A). The Chandra data (blue) show the location of the supernova's shock wave — similar to the sonic boom from a supersonic plane — interacting with the surrounding material about four light years from the original explosion point. Optical data from Hubble (orange and red) also shows evidence for this interaction in the ring. Additionally, we show an X-ray, optical and radio composite produced by NRAO.
(Credit: Radio: ALMA (ESO/NAOJ/NRAO), P. Cigan and R. Indebetouw; NRAO/AUI/NSF, B. Saxton; X-ray: NASA/CXC/SAO/PSU/K. Frank et al.; Optical: NASA/STScI)

Explore ViewSpace interactive.

5
Click for large jpg Composite
Jpeg, Tif
Click for large jpg X-ray
Jpeg, Tif
Click for large jpg Optical/Ultraviolet
Jpeg, Tif
X-ray, Optical, & Ultraviolet Images of Eta Carinae
What will be the next star in our Milky Way galaxy to explode as a supernova? Astronomers aren't certain, but one candidate is in Eta Carinae, a volatile system containing two massive stars that closely orbit each other. This image has three types of light: optical data from Hubble (appearing as white), ultraviolet (cyan) from Hubble, and X-rays from Chandra (appearing as purple emission). The previous eruptions of this star have resulted in a ring of hot, X-ray emitting gas about 2.3 light years in diameter surrounding these two stars.
(X-ray: NASA/CXC; Ultraviolet/Optical: NASA/STScI; Combined Image: NASA/ESA/N. Smith (University of Arizona), J. Morse (BoldlyGo Institute) and A. Pagan)

Explore ViewSpace interactive.

6
Click for large jpg Composite
Jpeg, Tif
Click for large jpg X-ray
Jpeg, Tif
Click for large jpg Optical
Jpeg, Tif
X-ray & Optical Images of Cartwheel Galaxy
This galaxy resembles a bull's eye, which is appropriate because its appearance is partly due to a smaller galaxy that passed through the middle of this object. The violent collision produced shock waves that swept through the galaxy and triggered large amounts of star formation. X-rays from Chandra (purple) show disturbed hot gas initially hosted by the Cartwheel galaxy being dragged over more than 150,000 light years by the collision. Optical data from Hubble (red, green, and blue) show where this collision may have triggered the star formation.
(Credit: X-ray: NASA/CXC; Optical: NASA/STScI)

7
Click for large jpg Composite
Jpeg, Tif
Click for large jpg X-ray
Jpeg, Tif
Click for large jpg Ultraviolet
Jpeg, Tif
Click for large jpg Infrared
Jpeg, Tif
Click for large jpg Optical
Jpeg, Tif
X-ray, Ultraviolet, Infrared, & Optical Images of Helix Nebula
When a star like the Sun runs out of fuel, it expands and its outer layers puff off, and then the core of the star shrinks. This phase is known as a "planetary nebula," and astronomers expect our Sun will experience this in about 5 billion years. This Helix Nebula images contains infrared data from NASA's Spitzer Space Telescope (green and red), optical light from Hubble (orange and blue), ultraviolet from NASA's Galaxy Evolution Explorer (cyan), and Chandra's X-rays (appearing as white) showing the white dwarf star that formed in the center of the nebula. The image is about four light years across.
(Credit: X-ray: NASA/CXC; Ultraviolet: NASA/JPL-Caltech/SSC; Optical: NASA/STScI(M. Meixner)/ESA/NRAO(T.A. Rector); Infrared: NASA/JPL-Caltech/K. Su)

Explore ViewSpace interactive.


Return to NASA's Chandra Opens Treasure Trove of Cosmic Delights (August 26, 2020)