Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Visual descriptions
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
NGC 4696: The Arrhythmic Beating of a Black Hole Heart
NGC 4696
NGC 4696
NGC 4696

  • A black hole has been "beating" about every 5 to 10 million years, pumping material and energy into its environment.

  • This black hole is at the center of a large elliptical galaxy located within the core of the Centaurus Cluster of galaxies.

  • Data from Chandra and other telescopes show evidence for repeated bursts, or eruptions, from the black hole.

  • These bursts created cavities within the hot, X-ray emitting gas that pervades the cluster.

At the center of the Centaurus galaxy cluster, there is a large elliptical galaxy called NGC 4696. Deeper still, there is a supermassive black hole buried within the core of this galaxy.

New data from NASA's Chandra X-ray Observatory and other telescopes has revealed details about this giant black hole, located some 145 million light years from Earth. Although the black hole itself is undetected, astronomers are learning about the impact it has on the galaxy it inhabits and the larger cluster around it.

In some ways, this black hole resembles a beating heart that pumps blood outward into the body via the arteries. Likewise, a black hole can inject material and energy into its host galaxy and beyond.

By examining the details of the X-ray data from Chandra, scientists have found evidence for repeated bursts of energetic particles in jets generated by the supermassive black hole at the center of NGC 4696. These bursts create vast cavities in the hot gas that fills the space between the galaxies in the cluster. The bursts also create shock waves, akin to sonic booms produced by high-speed airplanes, which travel tens of thousands of light years across the cluster.

This composite image contains X-ray data from Chandra (red) that reveals the hot gas in the cluster, and radio data from the NSF's Karl G. Jansky Very Large Array (blue) that shows high-energy particles produced by the black hole-powered jets. Visible light data from the Hubble Space Telescope (green) show galaxies in the cluster as well as galaxies and stars outside the cluster.

labeled image

Cavity processing scale: This image shows a larger field of view than the main composite image above and is about 122,000 light years across. This image has also been rotated slightly clockwise to the main composite image above.

Astronomers employed special processing to the X-ray data (shown above) to emphasize nine cavities visible in the hot gas. These cavities are labeled A through I in an additional image, and the location of the black hole is labeled with a cross. The cavities that formed most recently are located nearest to the black hole, in particular the ones labeled A and B.

The researchers estimate that these black hole bursts, or "beats", have occurred every five to ten million years. Besides the vastly differing time scales, these beats also differ from typical human heartbeats in not occurring at particularly regular intervals.

A different type of processing of the X-ray data reveals a sequence of curved and approximately equally spaced features in the hot gas. These may be caused by sound waves generated by the black hole's repeated bursts. In a galaxy cluster, the hot gas that fills the cluster enables sound waves — albeit at frequencies far too low for the human hear to detect — to propagate. (Note that both images showing the labeled cavities and this image are rotated slightly clockwise to the main composite.)

The features in the Centaurus Cluster are similar to the ripples seen in the Perseus cluster of galaxies. The pitch of the sound in Centaurus is extremely deep, corresponding to a discordant sound about 56 octaves below the notes near middle C. This corresponds to a slightly higher (by about one octave) pitch than the sound in Perseus. Alternative explanations for these curved features include the effects of turbulence or magnetic fields.

gas features

Curved processing scale: This image also shows a larger field of view than the main composite image and is about 550,000 light years across. This image has also been rotated slightly clockwise to the main composite image.

The black hole bursts also appear to have lifted up gas that has been enriched in elements generated in supernova explosions. The authors of the study of the Centaurus cluster created a map (shown above) showing the density of elements heavier than hydrogen and helium. The brighter colors in the map show regions with the highest density of heavy elements and the darker colors show regions with a lower density of heavy elements. Therefore, regions with the highest density of heavy elements are located to the right of the black hole. A lower density of heavy elements near the black hole is consistent with the idea that enriched gas has been lifted out of the cluster's center by bursting activity associated with the black hole. The energy produced by the black hole is also able to prevent the huge reservoir of hot gas from cooling. This has prevented large numbers of stars from forming in the gas.

A paper describing these results was published in the March 21st 2016 issue of the Monthly Notices of the Royal Astronomical Society and is available online. The first author is Jeremy Sanders from the Max Planck Institute for Extraterrestrial Physics in Garching, Germany.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

 

Fast Facts for NGC 4696:
Credit  X-ray: NASA/CXC/MPE/J.Sanders et al.; Optical: NASA/STScI; Radio: NSF/NRAO/VLA
Release Date  April 19, 2017
Scale  Image is about 2.2 arcmin across (about 93,000 light years)
Category  Black Holes, Normal Galaxies & Starburst Galaxies
Coordinates (J2000)  RA 12h 48m 48.90s | Dec -41° 18´ 44.40"
Constellation  Centaurus
Observation Date  15 pointings between May 2000 and June 2014
Observation Time  216 hours 29 min (9 days 29 min)
Obs. ID  504, 505, 4190, 4191, 4954, 4955, 5310, 16223-16225, 16534, 16607-16610
Instrument  ACIS
References Sanders, J. et al., 2016, MNRAS, 457, 82; arXiv:1601.01489
Color Code  X-ray (Red); Optical (Green); Radio (Blue)
Radio
Optical
X-ray
Distance Estimate  About 145 million light years
distance arrow
Visitor Comments (3)

Cheryl, its not the absence of a heartbeat. It only means it's not rhythmic.

Posted by Cody Higginbotham on Thursday, 05.4.17 @ 11:35am


Arrhythmia is actually the absence of a heartbeat. Your article is contradicted by it's title. But, fascinating, really great information here... Beautiful imagery.

Posted by Cheryl V on Monday, 05.1.17 @ 10:00am


How can things "erupt" from a black hole? I thought it drew everything in towards it and that even light can't escape so how is this possible? I assume that the escaping particles can't travel faster than the speed of light of course.

Posted by Shamas on Friday, 04.21.17 @ 05:51am


Rate This Image

Rating: 3.8/5
(586 votes cast)
Download & Share

More Information
Blog: NGC 4696
More Images
X-ray Image of NGC 4696
Jpg, Tif
X-ray

More Images
Animation & Video
Tour of NGC 4696
animation

More Animations
More Releases
NGC 4696
NGC 4696
(24 Apr 06)

Related Images
M87
M87
(18 Aug. 2010)
NGC 4696
NGC 4696
(24 Apr. 2006)

Related Information
Related Podcast
Top Rated Images
NGC 602

Wolf 359

Molecular Clouds in Galactic Center




FaceBookTwitterYouTubeFlickr