Growing Black Holes: Hunting for the First Seeds

 Mar Mezcua
Mar Mezcua

We are pleased to welcome Mar Mezcua as a guest blogger today. She led the study that is the subject of our latest press release, about an intermediate mass black hole. Mar is from Balaguer (Lleida, Spain) and studied Physics in the University Autonomous of Barcelona and in the University of La Laguna, where she also specialized in Astrophysics. She completed her PhD at the Max-Planck-Institut fuer Radioastronomie (Bonn, Germany) in 2011 and then moved to the Instituto de Astrofisica de Canarias (Canary Islands, Spain) as a postdoctoral researcher. She is currently a postdoctoral researcher at the Harvard-Smithsonian Center for Astrophysics.

I found my calling when I was 13 years old and serendipitously watched a documentary on TV about galaxies and supermassive black holes. I wanted to become an astrophysicist and study these exciting objects!

Supermassive black holes reside at the center of galaxies and are more than a million times more massive than the Sun. As their name implies, they are black and thus cannot be observed directly. Hence, to detect black holes we have to observe the matter that surrounds and feeds them, this is, the material that the black hole “accretes.” In supermassive black holes, this accreting material heats up high enough to emit X-rays so that we can detect it with X-ray satellites like NASA’s Chandra X-ray Observatory. Some supermassive black holes also eject outflows of plasma or jets, which emit mainly at radio wavelengths.

NASA's Chandra Finds Intriguing Member of Black Hole Family Tree

NGC 2276*

A newly discovered object in the galaxy NGC 2276 may prove to be an important black hole that helps fill in the evolutionary story of these exotic objects, as described in our latest press release. The main image in this graphic contains a composite image of NGC 2766 that includes X-rays from NASA's Chandra X-ray Observatory (pink) combined with optical data from the Hubble Space Telescope and the Digitized Sky Survey (red, green and blue). The inset is a zoom into the interesting source that lies in one of the galaxy's spiral arms. This object, called NGC 2276-3c, is seen in radio waves (red) in observations from the European Very Long Baseline Interferometry Network, or EVN.

Chandra and #ScienceWoman

 Women

At the Chandra X-ray Center, we take pride in promoting and supporting women in science, technology, engineering, mathematics (STEM) whenever we can. (Did you know that Belinda Wilkes is the first woman to be the director of a Great Observatory?) There are so many women who have been crucial to the Chandra project that we have put together a series of profiles called “Women in the High-Energy Universe.”

Unfortunately, many girls and women still feel marginalized or excluded from STEM fields. We noticed a new project by Amy Poehler’s Smart Girls that is trying to change that called #ScienceWoman. By teaming up with PBS Digital Studios and the “It’s Okay to be Smart” web series, they are asking for people to submit videos of the women in science who have inspired them: http://amysmartgirls.com/2015/02/sciencewoman/

Exploded Star Blooms Like a Cosmic Flower

G299.2-2.9*

Because the debris fields of exploded stars, known as supernova remnants, are very hot, energetic, and glow brightly in X-ray light, NASA's Chandra X-ray Observatory has proven to be a valuable tool in studying them. The supernova remnant called G299.2-2.9 (or G299 for short) is located within our Milky Way galaxy, but Chandra's new image of it is reminiscent of a beautiful flower here on Earth.

Light: Going Beyond the Bulb

2015 has been declared the International Year of Light and Light-based Technologies (#IYL2015) by the United Nations. Working for NASA’s Chandra X-ray Observatory, a space-based telescope that observes X-rays from the Universe, we talk about light all the time. X-rays are a kind of light. There are many different kinds of light that make up the electromagnetic spectrum, from radio waves to gamma rays, but only one that human eyes can detect naturally (known as optical, or visible, light).


Caption: This illustration shows the full range of the electromagnetic spectrum, in order of increasing frequency or energy, from radio waves, to microwave, to infrared, to visible or optical, to ultraviolet, to X rays, to gamma rays.
Image file: http://lightexhibit.org/images/featured/about_light.jpg
Image Credit: NASA/CXC/M.Weiss

Chandra Celebrates The International Year of Light

IYL*

The year of 2015 has been declared the International Year of Light (IYL) by the United Nations. Organizations, institutions, and individuals involved in the science and applications of light will be joining together for this yearlong celebration to help spread the word about the wonders of light.

In many ways, astronomy uses the science of light. By building telescopes that can detect light in its many forms, from radio waves on one end of the "electromagnetic spectrum" to gamma rays on the other, scientists can get a better understanding of the processes at work in the Universe.

NASA's Chandra Detects Record-Breaking Outburst from Milky Way's Black Hole

Sagittarius A*

On September 14, 2013, astronomers caught the largest X-ray flare ever detected from the supermassive black hole at the center of the Milky Way, known as Sagittarius A* (Sgr A*). This event, which was captured by NASA's Chandra X-ray Observatory, was 400 times brighter than the usual X-ray output from Sgr A*, as described in our press release. The main portion of this graphic shows the area around Sgr A* in a Chandra image where low, medium, and high-energy X-rays are red, green, and blue respectively. The inset box contains an X-ray movie of the region close to Sgr A* and shows the giant flare, along with much steadier X-ray emission from a nearby magnetar, to the lower left. A magnetar is a neutron star with a strong magnetic field. A little more than a year later, astronomers saw another flare from Sgr A* that was 200 times brighter than its normal state in October 2014.

Chandra Weighs Most Massive Galaxy Cluster in Distant Universe

il Gioiello Cluster

A newly discovered galaxy cluster is the most massive one ever detected with an age of 800 million years or younger. Using data from NASA's Chandra X-ray Observatory, astronomers have accurately determined the mass and other properties of this cluster, as described in our latest press release. This is an important step in understanding how galaxy clusters, the largest structures in the Universe held together by gravity, have evolved over time.

Galactic Get-Together has Impressive Light Display

NGC 2207 and IC 2163

At this time of year, there are lots of gatherings often decorated with festive lights. When galaxies get together, there is the chance of a spectacular light show as is the case with NGC 2207 and IC 2163

Located about 130 million light years from Earth, in the constellation of Canis Major, this pair of spiral galaxies has been caught in a grazing encounter. NGC 2207 and IC 2163 have hosted three supernova explosions in the past 15 years and have produced one of the most bountiful collections of super bright X-ray lights known. These special objects - known as "ultraluminous X-ray sources" (ULXs) - have been found using data from NASA's Chandra X-ray Observatory.

An "Hour of Code" with Color, Images, and Astronomy

For many, it might be hard to imagine living a life without computers and technology. In fact, it’s become so much a part of our society that we may not realize how dependent we are on technology.

But who does the work that enables these computers to fit into our daily lives? Who gets to learn how to code? A project called “Hour of Code” as well as Computer Science Education Week is seeking to address that question by increasing access to coding opportunities for elementary, middle and high school students, and particularly girls and underrepresented students of color.

Here at the Chandra X-ray Center we strongly believe in this goal as well. We’ve joined forces with other members of the astronomical community, including an astronomer at the American Astronomical Society, others at the Smithsonian Astrophysical Observatory, as well as partners at Google's CS First and Pencil Code, to create a project for the “Hour of Code” that combines color, astronomy, and coding: http://event.pencilcode.net/home/hoc2014/

Pages

Disclaimer: This service is provided as a free forum for registered users. Users' comments do not reflect the views of the Chandra X-ray Center and the Harvard-Smithsonian Center for Astrophysics.
Please note this is a moderated blog. No pornography, spam, profanity or discriminatory remarks are allowed. No personal attacks are allowed. Users should stay on topic to keep it relevant for the readers.
Read the privacy statement