By Length
Full (4-12 min)
Short (1-4 min)
By Date
2024 | 2023 | 2022 | 2021
2020 | 2019 | 2018 | 2017
2016 | 2015 | 2014 | 2013
2012 | 2011 | 2010 | 2009
2008 | 2007 | 2006
By Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Groups of Galaxies
Cosmology/Deep Field
Miscellaneous
HTE
STOP
Space Scoop for Kids!
Chandra Sketches
Light
AstrOlympics
Quick Look
Visual Descriptions
Subscribe
How To
RSS Reader
Audio-only format podcast
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader


A Tour of Black Hole Seeds

View/Listen
Narrator (April Hobart, CXC): Astronomers have long tried to determine just how supermassive black holes, those with millions or even billions of times the mass of the Sun in the centers of nearly all large galaxies, first formed. A conundrum arises because some of these supermassive black holes have been found less than a billion years after the Big Bang. How could such giant objects have formed so quickly?

New research using data from three of NASA's Great Observatories - Hubble, Chandra, and Spitzer - may help answer this important question. By developing a sophisticated computer model and new techniques to search large databases, a team of astronomers came up with a novel way to look for some of the Universe's earliest supermassive black holes. Their method targeted objects that matched the properties of one proposed mechanism to form these black holes: direct collapse. In this scenario, supermassive black holes would have formed directly from the collapse of a cloud of gas, producing a black hole of about 10,000 times the mass of the Sun. There is a competing theory where a massive star collapses to produce a black hole of about 10 solar masses, which then packs on weight very quickly to get up to supermassive size.

The new results suggest that at least some of the supermassive black holes in the early Universe formed through this direct collapse method. If these findings are confirmed with other research, it could help astronomers understand how black holes were formed billions of years ago and give more insight into the early Universe itself.

Return to Podcasts