News by Date
News by Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Press Resources
Status Reports
Press Advisories
Image Releases
Release Guidelines
Image Use Policy
NASA TV
Biographies/Interviews
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Related Links

Chandra @ NASA
Visit the Chandra pages at the NASA portal (opens in new window)
Image Use
Image Use Policy & Request Form
Guidelines for utilizing images, applets, movies, and animations featured in this Web Site.
Black Holes Are The Rhythm at The Heart of Galaxies

For Release: November 18, 2008

Univ. of Michigan Release

M84 Image Credit: X-ray (NASA/CXC/MPE/A.Finoguenov et al.); Radio (NSF/NRAO/VLA/ESO/R.A.Laing et al); Optical (SDSS)
Press Image and Caption

ANN ARBOR, Mich. -- The powerful black holes at the center of massive galaxies and galaxy clusters act as hearts to the systems, pumping energy out at regular intervals to regulate the growth of the black holes themselves, as well as star formation, according to new data from NASA's Chandra X-Ray Observatory.

Scientists from the University of Michigan, the Max-Planck Institute for Extraterrestrial Physics in Germany, the University of Maryland, Baltimore County (UMBC), the Harvard-Smithsonian Center for Astrophysics and Jacobs University in Germany contributed to the results.

The gravitational pull of black holes is so strong that not even light can escape from them. Supermassive black holes with masses of more than a billion suns have been detected at the center of large galaxies. The material falling on the black holes causes sporadic or isolated bursts of energy, by which black holes are capable of influencing the fate of their host galaxies. The insight gained by this new research shows that black holes can pump energy in a gentler and rhythmic fashion, rather then violently.

The scientists observed and simulated how the black hole at the center of elliptical galaxy M84 dependably sends bubbles of hot plasma into space, heating up interstellar space.

This heat is believed to slow both the formation of new stars and the growth of the black hole itself, helping the galaxy remain stable. Interstellar gases only coalesce into new stars when the gas is cool enough. The heating is more efficient at the sites where it is most needed, the scientists say.

Alexis Finoguenov, of UMBC and the Max-Planck Institute for Extraterrestrial Physics in Germany, compares the central black hole to a heart muscle.

"Just like our hearts periodically pump our circulatory systems to keep us alive, black holes give galaxies a vital warm component. They are a careful creation of nature, allowing a galaxy to maintain a fragile equilibrium," Finoguenov said.

This finding helps to explain a decades-long paradox of the existence of large amounts of warm gas around certain galaxies, making them appear bright to the Chandra X-ray telescope.

"For decades astronomers were puzzled by the presence of the warm gas around these objects. The gas was expected to cool down and form a lot of stars," said Mateusz Ruszkowski, an assistant professor in the University of Michigan Department of Astronomy.

"Now, we see clear and direct evidence that the heating mechanism of black holes is persistent, producing enough heat to significantly suppress star formation. These plasma bubbles are caused by bursts of energy that happen one after another rather than occasionally, and the direct evidence for such periodic behavior is difficult to find."

The bubbles form one inside to another, for a sort of Russian doll effect that has not been seen before, Ruszkowski said. One of the bubbles of hot plasma appears to be bursting and its contents spilling out, further contributing to the heating of the interstellar gas.

"Disturbed gas in old galaxies is seen in many images that NASA's Chandra observatory obtained, but seeing multiple events is a really impressive evidence for persistent black hole activity," says Christine Jones, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics.

A paper on the research called "In-depth Chandra study of the AGN feedback in Virgo Elliptical Galaxy M84" has been published in Astrophysical Journal.

For more information:
Mateusz Ruszkowski: http://lsa.umich.edu/astro/people/core-faculty/mateuszr.html

Contact:
Nicole Casal Moore
+1 (734) 647-1838 or +1 (734) 647-7087
ncmoore@umich.edu

Additional information and images are available at:
http://chandra.harvard.edu/
and
http://chandra.nasa.gov