Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Visual descriptions
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
X-rays Spot Spinning Black Holes Across Cosmic Sea

  • A new study has revealed how fast some distant, rapidly growing supermassive black holes are spinning.

  • The material around of one these black holes is spinning at greater than about 70% of the speed of light.

  • Astronomers used Chandra to study the accretion disks of material around the black holes that are superheated and glow in X-rays.

  • The researchers used gravitational lensing that produces multiple images of a background object due to the bending of space-time.

Like whirlpools in the ocean, spinning black holes in space create a swirling torrent around them. However, black holes do not create eddies of wind or water. Rather, they generate disks of gas and dust heated to hundreds of millions of degrees that glow in X-ray light.

Using data from NASA's Chandra X-ray Observatory and chance alignments across billions of light years, astronomers have deployed a new technique to measure the spin of five supermassive black holes. The matter in one of these cosmic vortices is swirling around its black hole at greater than about 70% of the speed of light.

The astronomers took advantage of a natural phenomenon called a gravitational lens. With just the right alignment, the bending of space-time by a massive object, such as a large galaxy, can magnify and produce multiple images of a distant object, as predicted by Einstein.

In this latest research, astronomers used Chandra and gravitational lensing to study five quasars, each consisting of a supermassive black hole rapidly consuming matter from a surrounding accretion disk. Gravitational lensing of the light from each of these quasars by an intervening galaxy has created multiple images of each quasar, as shown by these Chandra images of four of the targets. The sharp imaging ability of Chandra is needed to separate the multiple, lensed images of each quasar.

The key advance made by researchers in this study was that they took advantage of "microlensing," where individual stars in the intervening, lensing galaxy provided additional magnification of the light from the quasar. A higher magnification means a smaller region is producing the X-ray emission.

The researchers then used the property that a spinning black hole is dragging space around with it and allows matter to orbit closer to the black hole than is possible for a non-spinning black hole. Therefore, a smaller emitting region corresponding to a tight orbit generally implies a more rapidly spinning black hole. The authors concluded from their microlensing analysis that the X-rays come from such a small region that the black holes must be spinning rapidly.

The results showed that one of the black holes, in the lensed quasar called the "Einstein Cross," (labeled Q2237 in the image above) is spinning at, or almost at, the maximum rate possible. This corresponds to the event horizon, the black hole's point of no return, spinning at the speed of light, which is about 670 million miles per hour. Four other black holes in the sample are spinning, on average, at about half this maximum rate.

For the Einstein Cross the X-ray emission is from a part of the disk that is less than about 2.5 times the size of the event horizon, and for the other 4 quasars the X-rays come from a region four to five times the size of the event horizon.

How can these black holes spin so quickly? The researchers think that these supermassive black holes likely grew by accumulating most of their material over billions of years from an accretion disk spinning with a similar orientation and direction of spin, rather than from random directions. Like a merry-go-round that keeps getting pushed in the same direction, the black holes kept picking up speed.

The X-rays detected by Chandra are produced when the accretion disk surrounding the black hole creates a multimillion-degree cloud, or corona above the disk near the black hole. X-rays from this corona reflect off the inner edge of the accretion disk, and the strong gravitational forces near the black hole distort the reflected X-ray spectrum, that is, the amount of X-rays seen at different energies. The large distortions seen in the X-ray spectra of the quasars studied here imply that the inner edge of the disk must be close to the black holes, giving further evidence that they must be spinning rapidly.

The quasars are located at distances ranging from 9.8 billion to 10.9 billion light years from Earth, and the black holes have masses between 160 and 500 million times that of the sun. These observations were the longest ever made with Chandra of gravitationally lensed quasars, with total exposure times ranging between 1.7 and 5.4 days.

A paper describing these results is published in the July 2nd issue of The Astrophysical Journal, and is available online. The authors are Xinyu Dai, Shaun Steele and Eduardo Guerras from the University of Oklahoma in Norman, Oklahoma, Christopher Morgan from the United States Naval Academy in Annapolis, Maryland, and Bin Chen from Florida State University in Tallahassee, Florida.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

 

Fast Facts for Q2237+0305:
Credit  NASA/CXC/Univ. of Oklahoma/X. Dai et al.
Release Date  July 03, 2019
Scale  Image is 18 arcsec across. (About 500,000 light years)
Category  Quasars & Active Galaxies
Coordinates (J2000)  RA 22h 40m 30.34s | Dec 03° 21´ 28.8"
Constellation  Pegasus
Observation Dates  20 pointings from Dec 31, 2009 to Jun 6, 2014
Observation Time  130 hours
Obs. IDs  11534-11539, 13191, 13195, 12831-12832, 13960-13961, 14513-14518, 16316-16317
Instrument  ACIS
References Dai, X. et al. 2019, AJ, 879, 35
arXiv:1901.06007
Color Code  X-ray intensity: purple
X-ray
Distance Estimate  About 9.8 billion light years (z=1.69)
distance arrow

Fast Facts for HE0435-1223:
Credit  NASA/CXC/Univ. of Oklahoma/X. Dai et al.
Release Date  July 03, 2019
Scale  Image is 18 arcsec across. (About 500,000 light years)
Category  Quasars & Active Galaxies
Coordinates (J2000)  RA 4h 38m 14.9s | Dec -12° 17´ 14.4"
Constellation  Eridanus
Observation Dates  9 pointings from Dec 10, 2009 to Apr 11, 2015
Observation Time  74 hours
Obs. IDs  11550-11552, 14489-14494
Instrument  ACIS
References Dai, X. et al. 2019, AJ, 879, 35
arXiv:1901.06007
Color Code  X-ray intensity: purple
X-ray
Distance Estimate  About 9.8 billion light years (z=1.689)
distance arrow

Fast Facts for HE1104-1805:
Credit  NASA/CXC/Univ. of Oklahoma/X. Dai et al.
Release Date  July 03, 2019
Scale  Image is 18 arcsec across. (About 490,000 light years)
Category  Quasars & Active Galaxies
Coordinates (J2000)  RA 11h 06m 33.45s | Dec -18° 21´ 24.2"
Constellation  Crater
Observation Dates  9 pointings from Feb 2, 2010 to Dec 3, 2015
Observation Time  53 hours
Obs. IDs  11553-11555, 14501-1450
Instrument  ACIS
References Dai, X. et al. 2019, AJ, 879, 35
arXiv:1901.06007
Color Code  X-ray intensity: purple
X-ray
Distance Estimate  About 10.9 billion light years (z=2.32)
distance arrow

Fast Facts for SDSS J1004+4112:
Credit  NASA/CXC/Univ. of Oklahoma/X. Dai et al.
Release Date  July 03, 2019
Scale  Image is 25 arcsec across. (About 700,000 light years)
Category  Quasars & Active Galaxies
Coordinates (J2000)  RA 10h 04m 34.91s | Dec 41° 12´ 42.8"
Constellation  Leo Minor
Observation Dates  10 pointings from Mar 8, 2010 to Jun 2, 2014
Observation Time  69 hours
Obs. IDs  11546-11549, 14495-14500
Instrument  ACIS
References Dai, X. et al. 2019, AJ, 879, 35
arXiv:1901.06007
Color Code  X-ray intensity: purple
X-ray
Distance Estimate  About 9.9 billion light years (z=1.734)
distance arrow
Rate This Image

Rating: 3.8/5
(263 votes cast)
Download & Share

More Information
More Images
X-ray Image of
HE0435-1223
Jpg, Tif
X-ray

More Images
Animation & Video
A Tour of Lensed Quasars
animation

More Animations
Related Images
Related Information
Related Podcast
Top Rated Images
Data Sonification

Brightest Cluster Galaxies

Timelapses: Crab Nebula and Cassiopeia A




FaceBookTwitterYouTubeFlickr