Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
RCW 103: Young Magnetar Likely the Slowest Pulsar Ever Detected
RCW 103
RCW 103
RCW 103

  • The slowest spinning neutron star may have been detected using Chandra and other X-ray telescopes.

  • The object is found in the middle of the RCW 103 supernova remnant, which is about 10,700 light years from Earth.

  • While other neutron stars spin multiple times a minute, this object only rotates once about every 6.5 hours.

  • Chandra data showed this object displays properties of a magnetar, a type of neutron star with extremely powerful magnetic fields.

Using NASA's Chandra X-ray Observatory and other X-ray observatories, astronomers have found evidence for what is likely one of the most extreme pulsars, or rotating neutron stars, ever detected. The source exhibits properties of a highly magnetized neutron star, or magnetar, yet its deduced spin period is thousands of times longer than any pulsar ever observed.

For decades, astronomers have known there is a dense, compact source at the center of RCW 103, the remains of a supernova explosion located about 9,000 light years from Earth. This composite image shows RCW 103 and its central source, known officially as 1E 161348-5055 (1E 1613, for short), in three bands of X-ray light detected by Chandra. In this image, the lowest energy X-rays from Chandra are red, the medium band is green, and the highest energy X-rays are blue. The bright blue X-ray source in the middle of RCW 103 is 1E 1613. The X-ray data have been combined with an optical image from the Digitized Sky Survey.

Observers had previously agreed that 1E 1613 is a neutron star, an extremely dense star created by the supernova that produced RCW 103. However, the regular variation in the X-ray brightness of the source, with a period of about six and a half hours, presented a puzzle. All proposed models had problems explaining this slow periodicity, but the main ideas were of either a spinning neutron star that is rotating extremely slowly because of an unexplained slow-down mechanism, or a faster-spinning neutron star that is in orbit with a normal star in a binary system.

On June 22, 2016, an instrument aboard NASA's Swift telescope captured the release of a short burst of X-rays from 1E 1613. The Swift detection caught astronomers' attention because the source exhibited intense, extremely rapid fluctuations on a time scale of milliseconds, similar to other known magnetars. These exotic objects possess the most powerful magnetic fields in the Universe — trillions of times that observed on the Sun — and can erupt with enormous amounts of energy.

Seeking to investigate further, a team of astronomers led by Nanda Rea of the University of Amsterdam quickly asked two other orbiting telescopes — NASA's Chandra X-ray Observatory and Nuclear Spectroscopic Telescope Array, or NuSTAR — to follow up with observations.

New data from this trio of high-energy telescopes, and archival data from Chandra, Swift and ESA's XMM-Newton confirmed that 1E 1613 has the properties of a magnetar, making it only the 30th known. These properties include the relative amounts of X-rays produced at different energies and the way the neutron star cooled after the 2016 burst and another burst seen in 1999. The binary explanation is considered unlikely because the new data show that the strength of the periodic variation in X-rays changes dramatically both with the energy of the X-rays and with time. However, this behavior is typical for magnetars.

But the mystery of the slow spin remained. The source is rotating once every 24,000 seconds (6.67 hours), much slower than the slowest magnetars known until now, which spin around once every 10 seconds. This would make it the slowest spinning neutron star ever detected.

Astronomers expect that a single neutron star will be spinning quickly after its birth in the supernova explosion and will then slow down over time as it loses energy. However, the researchers estimate that the magnetar within RCW 103 is about 2,000 years old, which is not enough time for the pulsar to slow down to a period of 24,000 seconds by conventional means.

While it is still unclear why 1E 1613 is spinning so slowly, scientists do have some ideas. One leading scenario is that debris from the exploded star has fallen back onto magnetic field lines around the spinning neutron star, causing it to spin more slowly with time. Searches are currently being made for other very slowly spinning magnetars to study this idea in more detail.

Another group, led by Antonino D'Aì at the National Institute of Astrophysics (INAF) in Palermo, Italy, monitored 1E 1613 in X-rays using Swift and in the near-infrared and visible light using the 2.2-meter telescope at the European Southern Observatory at La Silla, Chile, to search for any low-energy counterpart to the X-ray burst. They also conclude that 1E 1613 is a magnetar with a very slow spin period.

A paper describing the findings of Rea's team appears in the September 2, 2016, issue of The Astrophysical Journal Letters and is available online. The authors of that paper are Nanda Rea (University of Amsterdam and IEEC-CSIC, Spain), A. Borghese (Univ. of Amsterdam), P. Esposito (Univ. of Amsterdam), F. Coti Zelati (Univ. of Amsterdam, INAF, Insubria), M. Bachetti (INAF), G. L. Israel (INAF), A. De Luca (INAF).

A paper describing the findings of D'Aì's team has been accepted for publication by Monthly Notices of the Royal Astronomical Society and is also available online.

NuSTAR is a Small Explorer mission led by the California Institute of Technology in Pasadena and managed by NASA's Jet Propulsion Laboratory, also in Pasadena, for NASA's Science Mission Directorate in Washington.

NASA's Swift satellite was launched in November 2004 and is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

Fast Facts for RCW 103:
Credit  X-ray: NASA/CXC/University of Amsterdam/N.Rea et al; Optical: DSS
Release Date  September 8, 2016
Scale  Image is 24 arcmin across (about 75 light years)
Category  Supernovas & Supernova Remnants, Neutron Stars/X-ray Binaries
Coordinates (J2000)  RA 16h 17m 28.80s | Dec -51° 01´ 48.00"
Constellation  Norma
Observation Date  22 pointings between Feb 2000 and June 2006
Observation Time  99 hours 43 min (4 days 3 hours 43 min).
Obs. ID  123, 970, 1040, 2314-2318, 2759, 3514-3517, 4596-4599, 5592-5595, 11823, 12224, 17460, 18878
Instrument  ACIS
References Rea, N. et al, 2016, ApJL (accepted); arXiv:1607.04107
Color Code  X-ray (Red, Green, Blue); Optical (Red, Green, Blue)
Optical
X-ray
Distance Estimate  About 10,700 light years
distance arrow
Visitor Comments (2)

Thanks for the fascinating read and paper about the very slow young magnetar pulsar. The paper data and your discussion was appreciated. I like pulsars.

Posted by Gail Hitson on Saturday, 09.10.16 @ 12:41pm


I was fascinated that there actually exists a relatively low spinning neutron star. Please continue to inform regarding new observations and hypotheses.
Thanks,
Henry.

Posted by Henry Gotlob on Friday, 09.9.16 @ 10:06am


Rate This Image

Rating: 3.8/5
(349 votes cast)
Download & Share

Desktops

1024x768 - 572 kb
1280x1024 - 852.5 kb
1680x1050 - 1019.1 kb
More Information
Blog: RCW 103
More Images
X-ray Image of RCW 103
Jpg, Tif
X-ray

More Images
Animation & Video
Tour of RCW 103
animation

More Animations
More Releases
RCW 103
RCW 103
(07 Jul 07)

Related Images
SN 1006
SN 1006
(17 Apr 13)

Cassiopeia A
Cassiopeia A
(15 Nov 13)

Related Information
Related Podcast
Top Rated Images
Brightest Cluster Galaxies

30 Doradus B

SDSS J1531+3414




FaceBookTwitterYouTubeFlickr